CONVOLUTION MATRIX FILTERS
[image: image1.jpg]

PAPER PRESENTED BY:
KRITHIKA NATARAJAN,
VINAYAGA SURESH KUMAR,
PRE-FINAL YEAR CSE STUDENTS,
E.G.S.PILLAY ENGINEERING COLLEGE

NAGAPATTINAM
Abstract:

This paper aims towards discussing the basics of convolution matrix and its effective use in filtering of an image. Convolution matrix has its basic use in signal processing likewise it has also been used in image processing. The use of convolution matrix in image processing is to set the brightness value of each image pixel based upon the surrounding which typically constitutes features of filters. Thus the use of convolution matrix in few types of filters like sharpen filter, gaussian filter, edge detection filter etc is outlined and also the best use of convolution matrix for the concerned filters is illustrated.
Introduction:

What is convolution matrix?

Convolution is the most important and fundamental concept in signal processing and analysis. By using convolution, we can construct the output of system for any arbitrary input signal, if we know the impulse response of system. Many image effects are also created through the mathematical process of convolution, where the brightness values in all channels of each pixel are recomputed based on the values of surrounding pixels. The rules for how each pixel's brightness values should be computed are given by a matrix of numbers, where the central number gives the brightness of the pixel and the other numbers set forth how values from surrounding pixels should be multiplied into the convolution.

CONVOLUTION MATRIX FOR IMAGES:
Likewise audio signal, a bitmap can be viewed as a summation of impulses, that is to say scaled and shifted delta functions. If we want to know the output image of a filter, we will simply have to convolve the entering bitmap with the bitmap representing the impulse response of the image filter. The two dimensional delta functions is an image composed by all zeros, except for a single pixel, which has
value of one. When this delta function is passed through a linear system, we will obtain a pattern, the impulse response of this system. The impulse response is often called the 'Point spread function' (PSF). Thus convolution matrixes, PSF, filter impulse response or filter kernel represent the same thing. Two dimensional convolution works just like one dimensional discrete convolutions, the output image y of an entering bitmap x, through a filter system of bitmap impulse
response h (width and height M) is given by formula:
[image: image2.png]1 MRl

y[r,c]:w Zﬁ Z; B ji]gx[r—jc—i]

=

Notice that the entering signal (Or the impulse response) alike one dimensional signals must first be flipped left for right and top for bottom before being multiplied and summed.

Therefore we can say that computing y[r,c] is like computing the center of gravity of some x[i,j] color values affected by the weights in the filter matrix. This normalizing factor is sometimes included into the filter matrix itself, sometimes you have to add it yourself. Just remember to always check that the numbers possible to obtain with y[r,c] are always between 0 and 255.

1)EXAMPLES FOR CONVOLUTION MATRIX:

[image: image3.png][The 1722 below is called normaiising facor

223 and enables th . val o ahways tay
:(impulse response bitm: [between 0-255, whatever the values of the X}
Filrimpuise espense bimap 13 Imay be. Indeed yfij] is nothing eise but the

center of graviy (center of mass) of some (]

333 color aues aflected by e weignts (he
importance) n the fiter matrix
Source Bmap X OutputBitmap Y
Al * 1= 122 () + 2011 + 2401511 + 211+ 31)

~

22=sum ofthe matier
coefcicints

2)3 X 3 MATRICES:
 All preset convolution matrices in Manifold are 3 x 3 matrices: only the central value and the immediately adjacent pixel value boxes have values in them. All other values are zero. Surprisingly, most classic image manipulation effects may be achieved with 3 x 3 matrices.

3) FILTERING AN IMAGE:
Image filtering is useful for many applications, including smoothing, sharpening, removing noise, and edge detection. A filter is defined by a kernel, which is a small array applied to each pixel and its neighbors within an image. In most applications, the center of the kernel is aligned with the current pixel, and is a square with an odd number (3, 5, 7, etc.) of elements in each dimension. The process used to apply filters to an image is known as convolution, and may be applied in either the spatial or frequency domain.

A few examples of common filters:
a -- Low pass filter:

A low pass filter is the basis for most smoothing methods. An image is smoothed by decreasing the disparity between pixel values by averaging nearby pixels .

Using a low pass filter tends to retain the low frequency information within an image while reducing the high frequency information. An example is an array of ones divided by the number of elements within the kernel, such as the following 3 by 3 kernel:

[image: image4.png]1/91/9 1/9
1/91/9 1/9
1/91/9 1/9

b-High pass filtering:

A high pass filter is the basis for most sharpening methods. An image is sharpened when contrast is enhanced between adjoining areas with little variation in brightness or darkness. A high pass filter tends to retain the high frequency information within an image while reducing the low frequency information. The kernel of the high pass filter is designed to increase the brightness of the center pixel relative to neighboring pixels. The kernel array usually contains a single positive value at its center, which is completely surrounded by negative values. The following array is an example of a 3 by 3 kernel for a high pass filter:

c--Directional Filtering:

A directional filter forms the basis for some edge detection methods. An edge within an image is visible when a large change (a steep gradient) occurs between adjacent pixel values. This change in values is measured by the first derivatives (often referred to as slopes) of an image. Directional filters can be used to compute the first derivatives of an image.

Directional filters can be designed for any direction within a given space. For images, x- and y-directional filters are commonly used to compute derivatives in their respective directions. The following array is an example of a 3 by 3 kernel for an x-directional filter (the kernel for the y-direction is the transpose of this kernel):

[image: image5.png]101
101
101

d--Laplacian Filtering:

A Laplacian filter forms another basis for edge detection methods. A Laplacian filter can be used to compute the second derivatives of an image, which measure the rate at which the first derivatives change. This helps to determine if a change in adjacent pixel values is an edge or a continuous progression.

Kernels of Laplacian filters usually contain negative values in a cross pattern (similar to a plus sign), which is centered within the array. The corners are either zero or positive values. The center value can be either negative or positive. The following array is an example of a 3 by 3 kernel for a Laplacian filter:

[image: image6.png]0-10
141
0-10

{,

FILTERS USING CONVOLUTION MATRIX:

a – sharpness filter:
Let us have some examples of different filter kernels. The first one will be the sharpness filter. Its aim is to make the image look more precise. The typical matrix convolution for a sharpness filter is:
[image: image7.png]J

k
k
k

-1 -1-1 -k —k
or|-1 9 -llor|-k 8k+1 —i
-1 -1-1 -k -k

-1

o
[

-1 0

15

(R14)

Looking at those matrixes you can feel that for each pixel on the source image we are going to compute the differences with its neighbors and make an average between those differences and the original color of the pixel. Therefore this filter will be enhancing the edge. Unfortunately this filter is not separable and we cannot decompose the filter matrix in the product of a vertical vector and a horizontal vector.

[image: image8.png]

Picture 9: Sharpness filter effects

b – Edge Detection:
This algorithm uses matrix convolution to detect edges. It is much slower than the algorithm seen in the first part for an equivalent result. Here are matrix filters examples for edge detection:

[image: image9.png]=

-2

-3
0
3
2
1

-1 -1
-2 -2
-3 -3

-1
-2
-3

=

-2

-3
0
3
2
1

1
-2
-3
0
3
2
1

0
3
2
1

-1
-2
-3

0 0lor
05

-1 (-5 0 0
0 |or| 0
1 0

-1 -1
or| 0 0
11

-1/8
-1/8
-1/8

-1/8 -1/8
-8 1
-18 -1/8

|

(R15)

The kernel elements should be balanced and arranged to emphasize differences along the direction of the edge to be detected. We may have noticed that some filters emphasize the diagonal edges like the third one, while others stress horizontal edges the fourth and the second. The first is quite efficient because it takes into account edges in any direction.

c – Embossing filter:
The embossing effect gives the optical illusion that some objects of the picture are closer or farther away than the background, making a 3D or embossed effect. This filter is strongly related to the previous one, except that it is not symmetrical, and only along a diagonal. Here are some examples of kernels:

[image: image10.png]

(R16)

Here again we will avoid dividing by the normalizing factor 0, and we will add 128 to all the double sums to get correct color values. The implementation of this algorithm is just the same as the previous one except that we must first convert the image into grayscale.

Here are the effects of this algorithm:

[image: image11.png]

Picture 9: Embossing filter
d – Gaussian blur filter:
As its name suggests, the Gaussian blur filter has a smoothing effect on images. It is in fact a low pass filter. Apart from being circularly symmetric, edges and lines in various directions are treated similarly, the Gaussian blur filters have very advantageous characteristics:

· They are separable into the product of horizontal and vertical vectors.

· Large kernels can be decomposed into the sequential application of small kernels.

· The rows and columns operations can be formulated as finite state machines to produce highly efficient code.

We will only study here the first optimisation, and leave the last two to a further learning (you can find more information on these techniques in the sources of this paper). So, the filter kernel of the Gaussian blur filter is decomposable in the product of a vertical vector and an horizontal vector, here are the possible vectors, multiplied by each other they will produce gaussian blur filters:
[image: image12.png]Sum of coefficients — 2N

0 | T
! 1 1 2
2 12 3
3 U S N
4 46 4 16
H 1 5 10 10 5 1 32
6 1 6 15 20 15 6 1 64
ps 17 20 3% 320 7 | 128
s I8 28 6 70 56 35 8 1 256
9 19 36 84 126 126 84 36 9 | 512
10 L1045 120 210 252 210 120 45 10 1 1024

1 I 1155165 330 462 462 330 165 55 11| 2048

Figure 6: Gaussian filters coefficients
(source: An efficient algorithm for gaussian blur filters, by F. Waltz and W. Miller)

Gaussian blur filter kernel example (order 2):

[image: image13.png]

(R17)

What increases greatly the algorithm's speed compared to the previous 'brute force' methods is that we will first convolve rows of the image with the (1 2 1) vector and then the columns of pixels with the (1 2 1)T vector. Thus we will use an intermediary bitmap where will be stored the results of the first convolutions. In the final bitmap will be stored the output of the second stage convolutions.

[image: image14.png]

Picture 10: Gaussian blur filter effects

	There are five convolution filter methods: Filter
	Description

	Average
	Replaces the pixel with the average (mean) value of the pixels within the kernel.

	Maximum
	Replaces the pixel value with the maximum value of the pixels within the kernel.

	Minimum
	Replaces the pixel value with the minimum value of the pixels within the kernel.

	Standard Deviation
	Replaces the pixel value with the standard deviation of the pixels within the kernel.

	Kernel
	Applies one of the following specific filters:

1)User Defined—Enables the users to specify the kernel width, height, and weight as well as the factors used to calculate the kernel values.
2) Sharpen—Uses a simple 3 by 3 sharpening kernel.
3)Sharpen More—Uses a simple 3 by 3 sharpening kernel but with a stronger effect than the Sharpen kernel.
4)Point Spread Function—Uses a 3 by 3 kernel to apply a point spread function.

The Convolution Filter process performs filtering on the pixel values in an image,
which can be used for sharpening an image, blurring an image, detecting edges within an image, or other kernel-based enhancements.

It is based on a moving kernel (matrix or window) across the image. The filter operation is performed on the pixels contained within the kernel, and the output is a new value for the center pixel in the window. The kernel moves one pixel at a time through the entire raster datasets for each row. The size of the kernel can be

defined, but it is optimized for smaller sizes from 3 by 3 to 7 by 7. The size of the kernel defines the number of pixels you want used in the filter calculation, and the size must always be a combination of odd numbers.
[image: image15.png]Pixel being recalculated

Pixels included in
the calculation,
using 2 3x3 kernel L=

" kemel
>
17 path

The convolution matrix usage is based on four rules. Each filter can have differing applications of the matrix based on these rules. The rules are based upon the type of kernel in use . Accordingly it can be summarized with
the help of the following table.

	
	

	
	

	
	

	
	

CONCLUSION:

Several strategies are useful to reduce the execution time when computing matrix convolution

1) Reducing the size of the filter.
2) Decompose the convolution matrix of the filter into a product of an horizontal vector and a vertical vector.
3) FFT convolution.

All these techniques have been tried out and the optimal usage of convolution matrix in various filters is attempted.
References:
1) The Scientist and Engineer’s Guide to Digital Image Processing, by Steven W.Smith

2) An efficient algorithm for gaussian blur using finite state machines, by F. Waltz and J.Miller

3) Practical Algorithms for Image Analysis, by M.Seul, L.O’Gorman, M. Sammon

4) Digital Image Processing, by R.Gonzalez and R.Woods

5) The Pocket Handbook of Imaging Processing Algorithms in C, by H.Myler and A.Weeks

