

COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING ACADEMIC YEAR 2011- 2012 / ODD SEMESTER

Question Bank

Subject Code/Name: CS1005-Unix Internals

Year / Sem: IV / VII

UNIT I- GENERAL OVERVIEW OF THE SYSTEM

Part A - 2 MARKS

- 1. Define shell and mention the properties of UNIX OS.
- 2. Mention the use of the fork System call and command "Passwd"
- 3. Differentiate between Exceptions & interrupts.
- 4. List the building block primitives of UNIX with Examples.
- 5. Kernel said to be non-preemptive comment.
- 6. Define Swpping&paging
- 7. Advantages and disadvantages of kernel data Structure
- 8. Define pathname component
- 9. Differentiate user mode & kernel mode
- 10 Draw a diagram process Execution levels.
- 11. What are the 3 levels of UNIX operating system?
- 12. Define System call interface
- 13. What are the subsystems of UNIX Os
- 14. Define Zambia State process transition
- 15. Define Sleep and Wakeup

Part B (16 Marks)

1. (a) Explain the details about UNIX System Architecture.	(8)
(b)Briefly details about System Structure .	(8)
Explain the details Operating System services.	(16
3. Explain the details about process states & state Transitio	n. (16
4. Explain the details about system concepts	(16)
5. Explain Assumption about Hardware	(16)
6. Explain the details about the User perspective	(16)

UNIT II- BUFFER CACHE Part A (2 MARKS)

- 1. Define pipes
- 2. Define major & minor number
- 3. Define buffer cache.
- 4. Mention the use of LSEEK System call.
- 5. Write the I/O parameters saved in the U area.
- 6. Define Inode Cache
- 7. What does the kernel in buffer read-ahead?
- 8. List out the various status of the buffer.
- 9. State the advantages and disadvantages of buffer cache
- 10. Define inode.
- 11. List the data structures and their relationship when a regular file is opened
- 12. Define free list
- 13. What are the fields of super block?
- 14. Define super block
- 15. Define directories.

Part B 16 Marks

1. Explain in detail about the structure of regular file	(16)
2.(a) Explain the algorithm for converting the path name to inode	(8)
(b) Explain the system call used for creating the special files	(8)
3. Write notes on	7
a) Directories	(8)
b) Super blocks	(8)
4. (a) Explain the details about buffer headers .	(8)
(b) Explain the structure of buffer pool	(8)

UNIT III- SYSTEM CALLS FOR FILE SYSTEM Part B 16 Marks

- 1. Define named and unnamed pipe
- 2. Define major and minor number
- 3. Define inode cache
- 4. List the data structures and their relationship when opening a regular
- 5. Explain file and record locking.
- 6. Explain on Lseek.
- 7. Define inode.
- 8. What is a system call and give 2 eg's.
- 9. Define pipe
- 10. Define dup.
- 11. Define close system call and their syntax.
- 12. Define Mounting system call and their syntax.
- 13. Define Un Mounting system call and their syntax.
- 14. Define write system call and their syntax
- 15. Define open system call and their syntax

Part B (16 Marks)

Discuss the concepts of pipes and DUP system call	(16)
2. Explain how a file is mounted and unmounted from the file structure	(16)
3. (a) Discuss the open system call and algorithm	(8)
(b)Discuss the close system call and algorithm	(8)
4. (a) Discuss the read system call and algorithm	(8)
(b) Discuss the write system call and algorithm	(8)
5. (a) Briefly explain file creation concepts	(8)
(b) Short notes on File locking & Record Locking	(8)

UNIT IV- THE STRUCTURE OF PROCESSES Part A (2 MARKS)

- 1. Define signals
- 2. Define context of the process
- 3. Define system boot.
- 4. Define init process
- 5. What are the first 3 steps of process states and transition
- 6. What are the fields of process table
- 7. Define context switch
- 8. Define pages and page tables
- 9. What is mean by region
- 10. Define U area
- 11. Define interrupts
- 12. Define Exception
- 13. define Abort process
- 14. define process groups
- 15. Give one example of Exit

Part B 16 Marks

a process, one when getting hold a region, one during execution	
and one while relinquishing it back	(16)
2. Describe the state transition that a process undergoes during its lifetime	(16)
3. (a) Every process maintains a private U area. Describe how 1. What is re	egion? state
any 3 region system calls that are invoked by	
the	
U area is maintained with the help of register triples.	(8)
(b)Write short notes on Signals	(8)
4. Discuss the context of a process in detail	(16)
5. Write the algorithm involved in creating a new process and explain it	(16)
6. Write and explain the algorithm for booting the system	(16)

UNIT V- PROCESS SCHEDULING AND MEMORY MANAGEMENT POLICIES Part A (2 MARKS)

- 1. Define scheduling
- 2. Define swapping
- 3. Define demand paging
- 4. Define system calls and give examples
- 5. Explain user priorities and kernel priorities
- 6. Examples of process scheduling
- 7. Define fair share group priorities
- 8. Explain real time processing
- 9. Define clock interrupts and function
- 10. Define map
- 11. Discuss briefly the parameter related to process scheduling

- 12. Write a brief note on the Page stealer process
- 13. What is the process of swapping process out.
- 14. Define Fork Swap
- 15. Define Expansion Swap

Part B 16 Marks

Explain process scheduling	(16)
2. What is the function of a clock interrupt handler?	
Details any 3 function along with the system calls and their data structures	(16)
3. What are the data structures related to paging	(16)
4. What is page fault? Discuss the page fault related to validity fault and	
Details all the cases when the page is faulted.	(16)
5. Write short notes on	
a. Allocations of swap space	(8)
b. Swapping processes out	(8)
6. (a) Explain briefly the concepts involved in driver interface	(8)
(b) Write short notes on terminal drivers	(8)
7. Write detail notes on disk drivers	(16)