DHANALAKSHMI SRINIVASAN ENGINEERING COLLEGE,

PERAMBALUR - 621 212

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

THEORY OF COMPUTATION

QUESTION BANK

UNIT-I AUTOMATA

Part-A

- 1. Define Deductive Proof.
- 2. Describe the language accepted by the DFA.
- 3. Obtain the DFA equivalent to the following NFA.

4. Obtain an NFA without ϵ -transition to the following NFA with ϵ -transition.

		0	1	2	3
>	q0	q0	-	-	q1
	q1	-	q1	-	q2
*	q2	-	-	q2	-

- 5. Is it true that language accepted by any NFA is different from the regular language? Justify your answer.
- 6. Find the language accepted by a DFA given below.

7. Find the ε -closure of the states 1, 2 and 4 in the following transition table.

\rightarrow	1	-	-	2
	2	-	-	3
	3	-	-	6
	4	5	-	-
	5	-	6	7
	6	-	-	-
*	7	-	-	-

- 8. Construct a finite automaton that accepts {0, 1} +.
- 9. The transition table for the NFA (without ϵ -transitions) is given below. Find the transition function $\delta(q,a)$.

		0	1	2
>*	q0	{q0,q1,q2}	{q1,q2}	q2
*	q1	φ	{q1,q2}	q2
*	q2	φ	φ	q2

- 10. What is a finite automaton? Give examples.
- 11. Enumerate the difference between DFA and NFA.
- 12. List any four ways of theorem proving.
- 13. Define NFA with ϵ -transition. Is the NFA's with ϵ -transitions are more powerful than the NFA's without ϵ -transitions? (in the sense of language acceptance).
- 14. Define Mutual Induction.
- 15. Determine an NFA accepting the language L={a* U b*}.
- 16. Construct finite automata for the language $(0^n n \mod 3 = 2, n \ge 0)$.
- 17. Define transition diagram and transition table.
- 18. Define the language of NFA.
- 19. List the uses of Finite Automata.
- 20. Design a DFA which accepts the string ends with 11.
- 21. Differentiate L* and L+.

Part-B.

- 1. Prove the theorem "Let S be a finite subset of some infinite set U. Let T be the complement of S with respect to U. Then T is infinite" using reduction to definitions. (16)
- 2. Consider the following ε-NFA.

		ε	a	b	С
>	p	{q,r}	φ	{q}	{r}
	q	φ	{p}	{r}	{p,q}
*	r	φ	φ	φ	φ

Compute the ϵ -closure and convert the automaton to a DFA.

(12)

- 3. Construct the DFA accepting the language over the alphabet $\{0,1\}$. L = The set of all strings ending in 00. (4)
- 4. Prove the theorem: If $x \ge 4$, then $2^x \ge x^2$, using deductive proof. (6)
- 5. Design a DFA that eliminate the ε -transitions from the ε -NFA. (10)

- 6. Let L be a set accepted by an NFA. Then prove that there exists a deterministic finite automaton that accepts L. Is the converse true? Justify your answer. (10)
- 7. Prove that a language L is accepted by some ε -NFA if and only if L is accepted by some DFA. (8)
- 8. Consider the following ϵ -NFA. Compute the ϵ Closure of each state and find its equivalent DFA. (8)
- 9. Convert the following NFA to its equivalent DFA.

(8)

	0	1
> p	{p,q}	{p}
q	{r}	{r}

	r	{s}	φ
*	S	{s}	{s}

10. Construct a DFA equivalent to the NFA M=($\{p,q,r\},\{0,1\},\delta,p,\{q,s\}$), where δ is defined in the following table. (10)

δ	0	1
> p	{q,s}	{q}
q	{r}	{q,r}
r	{s}	{p}
* S	φ	{p}

- 11. If L is accepted by an NFA with ϵ -transition then show that L is accepted by an NFA without ϵ -transition. (8)
- 12. Prove that a language L is accepted by some ϵ -NFA if and only if L is accept by some DFA. (8)
- 13. Consider the following ϵ -NFA. Compute the ϵ -Closure of each state and find it's equivalent DFA. (8)

		3	A	b	С
>	p	{q}	{p}	φ	φ
	q	{r}	φ	{q}	φ
*	r	φ	φ	φ	{r}

- 14. Draw the NFA to accept the following languages.
 - i. Set of strings over alphabet {0,1,...9} such that the final digit has appeared before.

(8)

ii. Set of strings of 0's and 1's such that there are two 0'a separated by a number of positions that is a multiple of 4. (8)

15. Prove the following by the principle of induction

n
$$\sum k^2 = n(n+1)(2n+1)$$
 K=1 6

16. Construct a DFA that accepts all the strings on (0,1) except those containing the substring 101. (6)

(6)

17. For the finite state machine M given in the following table, test whether the strings 101101, 11111 are accepted by M. (4)

	0	1
> q0	q0	q0
q1	q3	q0
q2	q0	q3
* q3	q1	q2

18. Construct a non-deterministic finite automation accepting the same set of strings over {a,b} ending in aba. Use it to construct a DFA accepting the same set of strings. (10)

19. Draw transition diagram for recognizing the set of all operators in C language. (10)

20. Explain the extended transition function for NFA, DFA and ϵ -NFA. (6)

UNIT-II REGULAR EXPRESSIONS AND LANGUAGES

Part-A

- 1. Show that $(r^*)^*=r^*$ for a regular expression r.
- 2. Describe the following sets by regular expressions:
 - a. L_1 = the set of all strings of 0's and 1'a ending in 00.
 - b. L_2 = the set of all strings of 0's and 1's beginning with 0 and ending with 1.
- 3. Explain the construction of NFA with ϵ -transition from any given regular expression.

- 4. Verify whether $L=\{a^{2n}/n \ge 1\}$ is regular.
- 5. Mention the closure properties of regular languages.
- 6. Show that the complement of a regular language is also regular.
- 7. Write the regular expression for the following language: the set of strings of 0's and 1's whose sixth symbol from the right end is 1.
- 8. How does u test the emptiness of regular languages?
- 9. Let R be any set of regular languages. Is U R_i regular? Prove it.
- 10. What are the applications of Regular expressions?
- 11. What is relationship between FA and Regular Expression?

<u>Part-B.</u>

- 1. Let r be a regular expression. Then prove that there exists an NFA with ϵ -transition that accepts L(r). (6)
- 2. Obtain the Regular Expression R for the following DFA A such that L(A)=L(r) (10)
- 3. Construct an NFA equivalent to the regular expression (0+1)*(00+11)(0+1)*. (8)
- 4. Obtain the regular expression that denotes the language accepted by the following DFA. (8)

- 5. Construct an NFA equivalent to $(0+1)^*$ (00+11). (8)
- 6. Construct a regular expression corresponding to the state diagram give in the following figure. (10)

	0	1
>* q1	q1	q2
q2	q2	q3
q3	q1	q2

- 7. Explain the construction of NFA with ϵ -transition from any given regular expression. (8)
- 8. Find the regular expression for the set of all strings denoted by R^{2}_{13} from the deterministic finite automata given below. (8)

- 9. Show that the language $L=\{0^{n2}/n\geq 1, n \text{ is an integer}\}\$ is not regular. (4)
- 10. Show that every set accepted by a DFA is denoted by a regular expression. (8)
- 11. Construct an NFA equivalent to the following regular expression 01*+1. (8)
- 12. Construct an NFA equivalent to the following regular expression ((10) + (0+1))*01. (10)
- 13. Prove that if L=L(A) for some DFA A, then there is a regular expression R such that L=L(R). (10)
- 14. Construct transition diagram of a finite automaton corresponding to the regular expression (ab+c*)b. (8)

15. Find the regular expression corresponding to the finite automaton given below.

(8)

- 16. Show that the language $\{0^p, p \text{ is prime}\}\$ is not regular. (6)
- 17. Find whether the languages {ww,w is in $(1+0)^*$, and $\{1^k/k=n^2, n\ge 1\}$ are regular or not. (8)
- 18. Show that the regular languages are closed under intersection and reversal. (8)
- 19. Construct an NFA equivalent to the regular expression 10+ (0+11)0*1. (6)
- 20. Find the equivalence and minimal DFA for the below DFA. (6)

> q0	q1	q3
q1	q2	q4
q2	q1	q4
q3	q2	q4
* q4	q4	q4

21. Obtain the regular expression that denotes the language accepted by (12)

22. Prove: If L is a regular language over alphabet Σ and h is a homomorphism on Σ , then h (L) is also regular. (10)

23. Construct an NFA equivalent to the regular expression
$$(0+1)*(00+11)(0+1)*$$
 (6)

24. Construct a minimum state automaton equivalent to a given automaton M whose transition table is given below. (8)

	a	b
> q0	q0	q3
q1	q2	q5
q2	q3	q4
q3	q0	q5
q4	q0	q6
q5	q1	q4
* q6	q1	q3

UNIT-III CONTEXT FREE GRAMMAR AND LANGUAGES

Part-A

- 1. Let $G=(\{S,C\},\{a,b\},P,S)$ where P consists of S->aCa,C->aCa/b. Find L(G).
- 2. Consider G whose productions are S->aAS/a, A->SbA/SS/ba. Show that S=>aabbaa and construct a derivation tree whose yield in aabbaa.
- 3. Construct a CFG for generating the language $L=\{a^nb^n/n\geq 1\}$
- 4. Let G be the grammar S->aB/bA, A->a/aS/bAA, B->b/bS/aBB. For the string aaabbabbba find a leftmost derivation.
- 5. What is the additional feature PDA has when compared with NFA? Is PDA superior over NFA in the sense of language acceptance? Justify your answer.
- 6. Explain what actions take place in the PDA by the transitions (moves) $\delta(q,a,Z) = \{(p1,\gamma1), (p2,\gamma2),..., (pm,\gamma m)\}$ and $\delta(q,\epsilon,Z) = \{(p1,\gamma1), (p2,\gamma2),..., (pm,\gamma m)\}$.
- 7. Find L (G) Ψ where G=({S}, {0,1}, {S->cS1, S-> ϵ },S).
- 8. Define derivation tree for a CFG.
- 9. Give an example of a PDA.
- 10. Define the acceptance of a PDA by empty stack. Is it true that the language accepted by a PDA by empty stack or by that of final states is different languages?

- 11. Consider the alphabet $\Sigma = \{a, b, (,), +, *, ., \epsilon\}$. Construct a CFG that generates all strings in Σ^* that are regular expressions over the alphabet $\{a,b\}$.
- 12. Write a CFG to generate the set $\{a^mb^nc^p/m+n=p \text{ and } p\ge 1\}$.
- 13. Define the languages generated by a PDA using final state of the PDA and empty stack of that PDA.
- 14. Fine the language generated by a CFG G=($\{S\},\{0,1\},\{S>0/1/\epsilon,S>0S0/1S1\},S$).
- 15. Obtain a derivation tree for the grammar $G=(\{S.A\}, a, b\}, P, S)$ where P consists of S->aAS/a, A->SbA/SS/ba
- 16. Give the formal definition of Pushdown Automation.
- 17. Define the languages generated by a PDA using final state of the PDA and empty stack of that PDA.
- 18. Is it true that deterministic pushdown automata and non-deterministic pushdown automata are equivalent in the sense of language of acceptance? Justify your answer.
- 19. Construct CFG to generate $\{a^nb^n|n∈Z^+\}$.
- 20. Define Instantaneous description of a PDA.
- 21. Give an example for a context-free grammar.
- 22. Let the productions of the grammar be S->0B|1A, A->0|0S|1AA, B->1|1S|0BB. For the string 0110 find a rightmost derivation.
- 23. Is it true that nondeterministic PDA is more powerful than that of deterministic PDA? Justify your answer.

Part-B

- 1. State the pumping lemma for regular sets. Show that the set $L=\{0^{12}/I \text{ is an integer, } i\geq 1\}$ is not regular. (6)
- 2. Let G=(V,T,P,S) be a context-free grammar. Then prove that $S=>\alpha$ if and only if there is a derivation tree in grammar G with yield G. (16)
- 3. If L is N (M₁) (the language accepted by empty stack) for same PDA M₁, then L is L (M₂) (language accepted by final state) for some PDA M₂. (6)
- 4. Let $M = (\{q0,q1\},\{0,1\},\{X_1,Z_0\}, \delta \text{ is given by } \delta(q0,0,Z0) = \{(q0,XZ0)\}$

$$\delta(q0,0,X) = \{(q0,XX)\}$$

$$\delta(q0,1,X) = \{(q1,\epsilon)\}$$

$$\delta(q1,1,X) = \{(q1,\epsilon)\}$$

$$\delta(q1,\epsilon,X) = \{(q1,\epsilon)\}$$

	$\delta(q1,\epsilon,Z0) = \{(q1,\epsilon)\}$		
	Construct a CFG G=(V,T,P,S) generating N(M).	(10)	
	*		
5.	Let $G=(V,T,P,S)$ be a CFG. Show that if $S=>\alpha$, then there is a derivation tree grammar G with yield α .	e in a	(6)
6.	Construct a PDA accepting $\{a^nb^ma^n/m,n>=1\}$ by empty stack. Also construct corresponding context-free grammar accepting the same set.	ict the (16)	
7.	Prove that L is L (M2) for some PDA M2 if and only if L is N (M1) for some $M_{\rm 1.}$	PDA	(10)
	*		
8.	Let G be a CFG and let A=>w in G. Then show that there is a leftmost derive of w.	vation	(6)
9.	Let G be the grammar S->0B 1A, A->0 0S 1AA, B->1 1S 0BB. For the strip 00110101 find its leftmost derivation and derivation tree.	ıg	(4)
10). If G is the grammar S->Sbs a, show that G is ambiguous.		(6)
11	L. If L is L (M_2) for some PDA M_2 , then show that L is N (M_1) for some PDA M_2	M. (6)	
	2. Construct a context-free grammar G which accepts N (M), where $M=(\{q0,q1\},\{a,b\},\{z0,z\},\delta,q0,z0,\phi)$ and where δ is given by $\{q0,b,z0\}=\{(q0,zz0)\}$		
	$\delta(q0,\epsilon,z0) = \{(q0,\epsilon)\}$		
	$\delta(q0,b,z)=\{(q0,zz)\}$		
	$\delta(q0,a,z)=\{(q,z)\}$		
	$\delta(q,b,z) = \{(q,\varepsilon)\}$		
	$\delta(q1,a,z0)=\{(q0,z0)\}$		(10)
13	3. If L is CFL then prove that there exists a PDA M such that L=N (M).	(10)	
14	4. Prove that if L=N (P_N) for some PDA P_N =($Q, \sum, \Gamma', \delta_N, q0, Z0$), then there is a P_F such that L=L (P_F).	PDA (8)	
15	5. Construct a PDA for {anbma²(m+n)/n,m≥0}.		(8)
16	5. Show that the grammar S->aSbS bSaS ε is ambiguous and what is the language generated by this grammar?	(6)	

17. Write a grammar to recognize all prefix expressions involving all binary arithmetic operators. Construct parse tree for the sentence "-*+abc/de" using your grammar. (6)

18. Find the left most and right most derivation corresponding to the parse tree. (4)

- 19. Find the language generated by the grammar $G = (\{S\},\{a,b\},\{S->ab\},S)$ (4)
- 20. Show that if L is a CFL then there exists a PDA M such that L=N (M). (16)
- 21. G denotes the context-free grammar defined by the following rules. (4x4=16) S->ASB|ab|SS, A->aA| ϵ , B->bB| ϵ
 - i. Give a leftmost derivation of aaabb in G. Draw the associated parse tree.
 - ii. Give a rightmost derivation of aaabb in G. Draw the associated parse tree.
 - iii. Show that G is ambiguous. Explain with steps.
 - iv. Construct an unambiguous grammar equivalent to G. Explain.
- 22. Construct a pushdown automaton that recognizes the language $\{a^ib^jc^k|I,j,k>0$ and i=j or $i=k\}$. (8)
- 23. Discuss about PDA acceptance

(8)

i. From empty stack to final state.

- ii. From final state to empty state.
- 24. Prove that if L is a context-free language then there exists a PDA on such that L = N (M). (12)
- 25. Explain different types of acceptance of a PDA. Are they equivalent in sense of language acceptance? Justify your answer. (4)
- 26. Give a detailed description of ambiguity in context-free grammar. (6)
- 27. Find a derivation tree of a*b+a*b given that a*b+a*b is in L (G) where G is given by S->S+S |S*S, S->a/b. (6)
 - 28. Show that the grammar S->a|abSb|aAb, A->bS|aAAb is ambiguous. (6)
 - 29. Construct a PDA for the language $\{a^nb^{2n}|n>=0\}$ (8)
 - 30. Construct a PDA for the grammar:
 - S->aB|bA, A->a|aS|bAA, B->b|bS|aBB (8)

UNIT-IV PROPERTIES OF CONTEXT-FREE LANGUAGES

Part A.

- 1. Define Turing Machine.
- 2. Define Instantaneous description and move of a Turing machine.
- 3. Explain the basic Turing Machine model and explain in one move. What are the actions take place in a Turing Machine?
- 4. Explain how a Turing machine can be regarded as a computing device to compute integer functions.
- 5. Define multitape Turing machine. Is it more power than the basic turing machine? Justify your answer.
- 6. When a recursively enumerable language is said to be recursive. Is it true that the language accepted by a non-deterministic Turing machine is different from recursively enumerable language?
- 7. Can you say the language generated by a CFG in CNF id finite or infinite? If so, how? If not, why?
- 8. What is the class of language for which the TM has both accepting and rejecting configuration? Can this be called a context free language?
- 9. The binary equivalent of a positive integer is stored in a tape. Write the necessary transitions to multiply that integer by 2.
- 10. Using pumping lemma show that the language $L=\{a^nb^nc^n/n\geq 1\}$ is not a context-free language.
- 11. What is meant by a Turing Machine with two-way infinite tape?
- 12. State the pumping lemma for CFL.
- 13. Give the formal definition of a Turing Machine.
- 14. Mention any two problems which can be solved by Turing Machines.
- 15. What are the features of Turing Machine?

1.	State the pumping lemma for regular sets. Show that the set $L=\{0^{12}/i \text{ is an integer,} \}$
2	i≥1} is not a regular. (6)
۷.	Find a grammar in Chomsky normal form equivalent to S->aAbB, A->aA/a, B-
2	>bB/b. (6)
3.	Construct a grammar in Greibach normal form equivalent to the grammar S-
	>AA/a, A->SS/b. (10)
4.	Design a Turing Machine to compute $f(m+n)=m+n$, for all m, $n\geq 0$ and simulate their
_	action on the input 0100. (10)
5.	Describe the following Turing Machine and their working. Are they more powerful
	than the Basic Turing Machine?
	1) Multi-tape Turing Machine
	2) Multi-dimensional Turing Machine
	3) Non-deterministic Turing Machine (6)
6.	Design a Turing machine M to implement the function "multiplication" using the
_	subroutine 'Copy'. (12)
7.	Explain how a turing Machine with the multiple tracks of the tape can be used to
	determine the given number is prime or not? (4)
8.	Find a grammar in Chomsky Normal form equivalent to
0	>aAD, A->aB bAB, B->b, D->d. (6)
9.	convert to Greebach normal form the grammar $G=(\{A_1,A_2,A_3\},\{a,b\},P,A_1\}$, where P
	consists of the following:
	$A_1 \rightarrow A_2 A_3, A_2 \rightarrow A_3 A_1 b, A_3 \rightarrow A_1 A_2 c$ (10)
10.	Show that the language $\{0^n1^n2^2/n\geq 1\}$ is not a context-free language. (6)
11.	Suppose G is a CFG and w, of length l, is in L (G). How long is a derivation of w in G if
	G is in CNF and if G is in GNF? (4)
12.	Show that every CFL without ε can be generated by a CFG in CNF. (4)
13.	Simplify the following grammar and find it's equivalent on CNF.
	>bA aB, A->bAA aS a, B->aBB bS b (8)
14.	Find the GNF equivalent of the grammar S->AA 0, A->SS 1. (4)
15.	Design a Turing Machine M for $f(x,y,z)=2(x+y)-z$, $z<2(x+y)$ and x,y,z are stored in the
	tape in the form $0^{x}10^{y}10^{z}1$. (12)
16.	Show that if L is accepted by a multi tape Turing Machine, it is accepted by single
	tape Turing Machine also (4)
	State and prove pumping lemma for context-free languages. (16)
18.	Explain in detail: "The Turing Machine as a computer of integer functions". (8)
19.	Design a Turing Machine to accept the language $L=\{0^n1^n/n\geq 1\}$ (8)
20.	What is the rule of checking off symbols in a Turing Machine. (4)
21.	Design a Turing Machine to implement "Proper Subtraction". (12)
22.	Design a Turing Machine M that decides $A=\{0^k n>0 \text{ and } k=2^n\}$, the language
	consisting of all strings of 0s whose length is a power of 2. (16)
23.	Demonstrate the working of your TM with an example. (4)
24.	Explain with an example how the finite control of a TM can be used to hold a finite
	amount of information. (6)
25.	Explain how a Turing machine can be viewed as a computing device on functions
	involving integers. (4)
26.	Construct a Turing Machine that recognizes the language $\{wcw/w \text{ in } \{a+b\}^*\}$. (16)
27.	Convert the grammar S->AB, A->BS b, B->SA a into Greibach normal form. (8)
28.	Simplify the following grammar and find it's equivalent in CNF. (8)
	S-SARICA R-SRCIAR A-S2 C-S2RIb

- 29. Find the GNF equivalent of the grammar S->AA|0, A->SS|1 (8)
- 30. State Pumping lemma for context free language. Show that {aⁿbⁿcⁿ/n is an integer, n≥1} is not context free language. (6)
- 31. Explain how the 'finite control' of a Turing Machine can be used to hold a finite amount of information with an example. (4)

UNIT V UNDECIDABILITY

Part-A

- 1. When a problem is said to be decidable and give an example of an undecidable problem?
- 2. Expalin the modified Post's Correspondence Problem.
- 3. Give two examples of Undecidable Problem.
- 4. Is it true that complement of a recursive language id recursive? Justify your answer.
- 5. When we say a problem is decidable? Give an example of undecidable problem?
- 6. Give two properties of recursively enumerable sets which are undecidable.
- 7. Show that the following problem is undecidable. "Given two CFGs G_1 and G_2 , is L $(G_1) \mathbb{Z} \ L \ (G2) = \varphi$?"
- 8. Define L_d.

- 9. Show that the union of two recursively enumerable languages is recursively enumerable.
- 10. What is undecidability problem?
- 11. Define Recursively Enumerable language.
- 12. Give an example for a non-recursively enumerable language.
- 13. Difference between recursive and recursively enumerable languages.
- 14. Mention any two undecidability properties for recursively enumerable languages.
- 15. Define Diagonal Language.

Part B

- 1. Define Universal language $L_{\rm u}$. Show that $L_{\rm u}$ is recursively enumerable but not recursive. (16)
- 2. Show that the complement of a recursive language is recursive. (6)
- 3. If a language L and its complement L are both recursively enumerable then show that L and hence L complement is recursive. (6)
- 4. Obtain the code for <M,1011>, where $M=(\{q1,q2,q3\},\{0,1\},\{0,1,B\},\delta,q1,B\{q2\})$ have moves:

$$\delta(q1,1) = (q3,0,R)$$

$$\delta(q3,0) = (q1,1,R)$$

$$\delta(q3,1) = (q2,0,R)$$

$$\delta(q3,B) = (q3,1,L) \tag{4}$$

- 5. Show that L_u is recursively enumerable but not recursive (16)
- 6. Define L_d and show that L_d is not recursively enumerable (12)
- 7. Whether the problem of determining given recursively enumerable language is empty or not? Is decidable? Justify your answer. (4)
- 8. Show that union of recursive language is recursive. (4)
- 9. Define the language L_d and show that L_d is not recursively enumerable language.
- 10. Explain the Halting problem. Is it decidable or undecidable problem? (4)
- 11. Find whether the following languages are recursive or recursively enumerable.
 - i. Union of two recursive languages. (4)
 - ii. Union of two recursive enumerable languages. (4)
 - iii. L if L and complement of L are recursively enumerable. (4)
 - iv. Lu
- 12. Show that "Finding whether the given CFG is ambiguous or not" is undecidable by reduction technique. (4)
- 13. Consider the Turing Machine M and w=01, where

M=({q1,q2,q3},{0,1},{0,1,B}, δ ,q1,B,{q3}) and δ is given by qi δ (qi,0) δ (qi,1) δ (qi,B)

qi	$\delta(q_i,0)$	$\delta(q_i,1)$	$\delta(q_i,B)$
q1	(q2,1,R)	(q2,0,L)	(q2,1,L)

q2	(q3,0,L)	(q1,0,R)	(q2,0,R)
q3	-	-	-

Reduce the above problem to Post's Correspondence Problem and find whether that PCP has a solution has a solution or not. (12)

- 14. Show that any non-trivial property J of the recursively enumerable languages is undecidable. (8)
- 15. Show that the language is not undecidable. L={<M>|M is a TM that accepts the string aaab}. (8)
- 16. Discuss the properties of Recursive and Recursive enumerable languages. (8)
- 17. Define Post Correspondence problem with an example.
- 18. Prove that the function $f(n)=2^n$ does not grow at a polynomial rate, in other words, it does not satisfy $f(n)=O(n^p)$ for any finite exponent p. (8)

(8)

- 19. Define the language L_d . Show that L_d is neither recursive nor recursively enumerable. (12)
- 20. State and prove Rice's Theorem for Recursive index sets. (16)
- 21. Does PCP with two lists $x=(b,bab^3,ba)$ and $y=(b^3,ba,a)$ have a solution? (5)
- 22. Show that the characteristic function of the set of all even numbers is recursive. (6)